Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.

Identifieur interne : 001264 ( Main/Exploration ); précédent : 001263; suivant : 001265

Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.

Auteurs : Alexandre Huber [Suisse] ; Sarah L. French ; Hille Tekotte ; Seda Yerlikaya ; Michael Stahl ; Mariya P. Perepelkina ; Mike Tyers ; Jacques Rougemont ; Ann L. Beyer ; Robbie Loewith

Source :

RBID : pubmed:21730963

Descripteurs français

English descriptors

Abstract

TORC1 is a conserved multisubunit kinase complex that regulates many aspects of eukaryotic growth including the biosynthesis of ribosomes. The TOR protein kinase resident in TORC1 is responsive to environmental cues and is potently inhibited by the natural product rapamycin. Recent characterization of the rapamycin-sensitive phosphoproteome in yeast has yielded insights into how TORC1 regulates growth. Here, we show that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (Ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of the transcriptional repressors Stb3, Dot6 and Tod6. Deletion of STB3, DOT6 and TOD6 partially bypasses the growth and cell size defects of an sch9 strain and reveals interdependent regulation of both Ribi and RP gene expression, and other aspects of Ribi. Dephosphorylation of Stb3, Dot6 and Tod6 enables recruitment of the RPD3L histone deacetylase complex to repress Ribi/RP gene promoters. Taken together with previous studies, these results suggest that Sch9 is a master regulator of ribosome biogenesis through the control of Ribi, RP, ribosomal RNA and tRNA gene transcription.

DOI: 10.1038/emboj.2011.221
PubMed: 21730963
PubMed Central: PMC3160192


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.</title>
<author>
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology and National Center for Competence in Research Program 'Frontiers in Genetics', University of Geneva, Geneva, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Molecular Biology and National Center for Competence in Research Program 'Frontiers in Genetics', University of Geneva, Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="French, Sarah L" sort="French, Sarah L" uniqKey="French S" first="Sarah L" last="French">Sarah L. French</name>
</author>
<author>
<name sortKey="Tekotte, Hille" sort="Tekotte, Hille" uniqKey="Tekotte H" first="Hille" last="Tekotte">Hille Tekotte</name>
</author>
<author>
<name sortKey="Yerlikaya, Seda" sort="Yerlikaya, Seda" uniqKey="Yerlikaya S" first="Seda" last="Yerlikaya">Seda Yerlikaya</name>
</author>
<author>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
</author>
<author>
<name sortKey="Perepelkina, Mariya P" sort="Perepelkina, Mariya P" uniqKey="Perepelkina M" first="Mariya P" last="Perepelkina">Mariya P. Perepelkina</name>
</author>
<author>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
</author>
<author>
<name sortKey="Rougemont, Jacques" sort="Rougemont, Jacques" uniqKey="Rougemont J" first="Jacques" last="Rougemont">Jacques Rougemont</name>
</author>
<author>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21730963</idno>
<idno type="pmid">21730963</idno>
<idno type="doi">10.1038/emboj.2011.221</idno>
<idno type="pmc">PMC3160192</idno>
<idno type="wicri:Area/Main/Corpus">001279</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001279</idno>
<idno type="wicri:Area/Main/Curation">001279</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001279</idno>
<idno type="wicri:Area/Main/Exploration">001279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.</title>
<author>
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology and National Center for Competence in Research Program 'Frontiers in Genetics', University of Geneva, Geneva, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Molecular Biology and National Center for Competence in Research Program 'Frontiers in Genetics', University of Geneva, Geneva</wicri:regionArea>
<orgName type="university">Université de Genève</orgName>
<placeName>
<settlement type="city">Genève</settlement>
<region nuts="3" type="region">Canton de Genève</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="French, Sarah L" sort="French, Sarah L" uniqKey="French S" first="Sarah L" last="French">Sarah L. French</name>
</author>
<author>
<name sortKey="Tekotte, Hille" sort="Tekotte, Hille" uniqKey="Tekotte H" first="Hille" last="Tekotte">Hille Tekotte</name>
</author>
<author>
<name sortKey="Yerlikaya, Seda" sort="Yerlikaya, Seda" uniqKey="Yerlikaya S" first="Seda" last="Yerlikaya">Seda Yerlikaya</name>
</author>
<author>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
</author>
<author>
<name sortKey="Perepelkina, Mariya P" sort="Perepelkina, Mariya P" uniqKey="Perepelkina M" first="Mariya P" last="Perepelkina">Mariya P. Perepelkina</name>
</author>
<author>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
</author>
<author>
<name sortKey="Rougemont, Jacques" sort="Rougemont, Jacques" uniqKey="Rougemont J" first="Jacques" last="Rougemont">Jacques Rougemont</name>
</author>
<author>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="eISSN">1460-2075</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>RNA, Ribosomal (biosynthesis)</term>
<term>RNA, Transfer (biosynthesis)</term>
<term>Ribosomal Proteins (biosynthesis)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert (biosynthèse)</term>
<term>ARN ribosomique (biosynthèse)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines ribosomiques (biosynthèse)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Ribosomal</term>
<term>RNA, Transfer</term>
<term>Ribosomal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN ribosomique</term>
<term>Protéines ribosomiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TORC1 is a conserved multisubunit kinase complex that regulates many aspects of eukaryotic growth including the biosynthesis of ribosomes. The TOR protein kinase resident in TORC1 is responsive to environmental cues and is potently inhibited by the natural product rapamycin. Recent characterization of the rapamycin-sensitive phosphoproteome in yeast has yielded insights into how TORC1 regulates growth. Here, we show that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (Ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of the transcriptional repressors Stb3, Dot6 and Tod6. Deletion of STB3, DOT6 and TOD6 partially bypasses the growth and cell size defects of an sch9 strain and reveals interdependent regulation of both Ribi and RP gene expression, and other aspects of Ribi. Dephosphorylation of Stb3, Dot6 and Tod6 enables recruitment of the RPD3L histone deacetylase complex to repress Ribi/RP gene promoters. Taken together with previous studies, these results suggest that Sch9 is a master regulator of ribosome biogenesis through the control of Ribi, RP, ribosomal RNA and tRNA gene transcription.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21730963</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2075</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.</ArticleTitle>
<Pagination>
<MedlinePgn>3052-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/emboj.2011.221</ELocationID>
<Abstract>
<AbstractText>TORC1 is a conserved multisubunit kinase complex that regulates many aspects of eukaryotic growth including the biosynthesis of ribosomes. The TOR protein kinase resident in TORC1 is responsive to environmental cues and is potently inhibited by the natural product rapamycin. Recent characterization of the rapamycin-sensitive phosphoproteome in yeast has yielded insights into how TORC1 regulates growth. Here, we show that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (Ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of the transcriptional repressors Stb3, Dot6 and Tod6. Deletion of STB3, DOT6 and TOD6 partially bypasses the growth and cell size defects of an sch9 strain and reveals interdependent regulation of both Ribi and RP gene expression, and other aspects of Ribi. Dephosphorylation of Stb3, Dot6 and Tod6 enables recruitment of the RPD3L histone deacetylase complex to repress Ribi/RP gene promoters. Taken together with previous studies, these results suggest that Sch9 is a master regulator of ribosome biogenesis through the control of Ribi, RP, ribosomal RNA and tRNA gene transcription.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and National Center for Competence in Research Program 'Frontiers in Genetics', University of Geneva, Geneva, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>French</LastName>
<ForeName>Sarah L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tekotte</LastName>
<ForeName>Hille</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yerlikaya</LastName>
<ForeName>Seda</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stahl</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perepelkina</LastName>
<ForeName>Mariya P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tyers</LastName>
<ForeName>Mike</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rougemont</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beyer</LastName>
<ForeName>Ann L</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loewith</LastName>
<ForeName>Robbie</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>206173</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>R01 GM063952</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM63952</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21730963</ArticleId>
<ArticleId IdType="pii">emboj2011221</ArticleId>
<ArticleId IdType="doi">10.1038/emboj.2011.221</ArticleId>
<ArticleId IdType="pmc">PMC3160192</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Oct;256(4):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9393435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2002 Aug 15;7(16):872-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12546954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Mar;23(5):1558-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Mar;11(3):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jul 9;118(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Oct 8;16(1):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Oct 28;20(2):263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Nov 10;1731(2):77-87; discussion 75-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Mar;23(4):293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16544271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Aug;173(4):1909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1339-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Dec 26;32(6):878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(11):R167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Apr;19(4):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Apr;5(4):e1000449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1944-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19928-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(12):e8249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20011513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec 15;8(24):4085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19823048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2010;2010:bap026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20428315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Jul;185(3):797-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):5315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Feb;31(4):803-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Feb;187(2):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Mar 10;296(5):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 16;19(20):5473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11032814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jun;12(6):996-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Feb;10(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Dec 14;14(23):R1014-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Genève</li>
</region>
<settlement>
<li>Genève</li>
</settlement>
<orgName>
<li>Université de Genève</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
<name sortKey="French, Sarah L" sort="French, Sarah L" uniqKey="French S" first="Sarah L" last="French">Sarah L. French</name>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<name sortKey="Perepelkina, Mariya P" sort="Perepelkina, Mariya P" uniqKey="Perepelkina M" first="Mariya P" last="Perepelkina">Mariya P. Perepelkina</name>
<name sortKey="Rougemont, Jacques" sort="Rougemont, Jacques" uniqKey="Rougemont J" first="Jacques" last="Rougemont">Jacques Rougemont</name>
<name sortKey="Stahl, Michael" sort="Stahl, Michael" uniqKey="Stahl M" first="Michael" last="Stahl">Michael Stahl</name>
<name sortKey="Tekotte, Hille" sort="Tekotte, Hille" uniqKey="Tekotte H" first="Hille" last="Tekotte">Hille Tekotte</name>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
<name sortKey="Yerlikaya, Seda" sort="Yerlikaya, Seda" uniqKey="Yerlikaya S" first="Seda" last="Yerlikaya">Seda Yerlikaya</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Genève">
<name sortKey="Huber, Alexandre" sort="Huber, Alexandre" uniqKey="Huber A" first="Alexandre" last="Huber">Alexandre Huber</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001264 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001264 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21730963
   |texte=   Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21730963" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020